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SUMMARY

The objective of this project was to establish the theoreti-

cal foundations for applying higher order Rayleigh and interface

modes to resonators for high stability sensors. Existing crystal

resonators, because of their surface sensitivity and thermal

characteristics, are not able to meet the stability requirements

of Air Force tactical systems.

Theoretical studies of the characteristics of Rayleigh waves

in single and multi-layer structures were carried out for ST-cut

Quartz substrates. Specified materials for this study were MgO,
Y2 03, AI, SiOx, A1203, and TiO . Velocity dispersion and coupl-

ing to bulk modes were predicted and confirmed by comparison with

experimental results for sputtered films.

Stoneley (interfacial) waves were investigated as possible

candidates for resonator structures because of their inherently

stable and low cost geometry without any type of hermetic enclos-

ure or package. A successful search technique was developed whi-

ch accurately predicts the existence of Stoneley waves in general

anisotropic (and piezoelectric) materials. Using this technique,

Stoneley waves were for the first time predicted in single crys-

tal quartz. Several useful orientations where Stoneley waves are

well bound and piezoelectrically active were found to exist.

Future plans are to design, fabricate and test interface

wave resonators. The end goal is to utilize interface wave res-

onators and sensors in Air Force tactical systems.



1.0 INTRODUCTION

The purpose of the work reported was to perform analyses of

the propagation characteristics of higher order acoustic Rayleigh

waves in multiple layered, anisotropic materials. The objective

was to establish theoretical foundations for predicting the per-

formance of higher order acoustic waves and to apply this know-

ledge to the design of acoustic resonators as strain sensors for

cantilever beam-type accelerometers. These higher order Rayleigh

waves differ from the normal surface waves because their energy

is distributed between the layers and the substrate, but not ent-

irely at the top surface of the layers. This has the advantage

that the propagation characteristics are less sensitive to conta-

mination or other undesireable effects at the surface of the cry-

stal. The reflective grooves in the resonator structure can be

passivated by the layers, thus reducing the possibility of false

sensor readings. These conditions all contribute to making a more

stable sensor.

1.1 Surface Acoustic Wave Accelerometer

A Rayleigh acoustic wave is an elastic wave which propagates

along the surface of an elastic solid. Since its energy is con-

confined near the surface, it can be generated, reflected, and

detected on the surface. Rayleigh wave devices constitute what

is called a planar technology and hence can be fabricated by

photolithographic techniques. Thus, these sensors can be produc-

ed at costs comparable to those of silicon integrated circuits.
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The Rayleigh wave resonator, introduced by Dr. Staples in

1974, consists of a pair of reflective gratings on a surface as

mirrors in a Fabry-Perot resonator structure. These waves can

be generated and detected by an interdigital transducer on a

piezoelectric substrate. The output of the acoustically resonant

cavity, shown in Figure. 1, is connected to a feedback amplifier

to maintian a high Q, standing wave in the cavity formed by the

two grating reflectors.

Figure 1- Typical Rayleigh wave resonator structure showing refl-
ective gratinqs (acoustic mirrors) and the input/output
interdigital transducer.

Since Rayleigh waves are confined to the surface, the sensor

can be configured as a cantilever beam, as shown in Figure 2. Ii

this "push-pull" open loop configuration, thermal effects are re-

duced by using two resonators (top and bottom) and the output is

then the differenc-u- , of O= ,---- -resonator f ue

3



ELECTRICAL
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OUTPUT

Figure 2- Cantilever beam-type rayleigh Wave Accelerometer where

the output is the difference frequency between the

opposing top and bottom resanant cavities.

1.2 Present SAW Technology Limitations

At the present time, short-term frequency stability of 
Ray-

leigh wave resonators is comparable to that of bulk-wave crystal

oscillators. Long-term stability of fundamental mode Rayleigh

resonators1 is not as good as that of bulk wave crystal oscilla-

tors. Rayleigh wave resonators typically have short-term (sec-

onds to minutes) frequency stability with a root Allan variance

of 10-10 parts/part of the resonant freuqency, and long-term 
ag-

-8

*ing rates in the range of 10 part/part/day.

Short-term stabilty for tactical missile applications (fli-

ght time typically is less tan 20 minutes) is not a significant
-10

problem. A variation of 10 of 500 MHz would equal 0.05 Hz.

With an assumed quantization of 0.1 fps/bit and input accelera-

tion of 200 g, this would equal 100 micro-g acceleration error.

4



I

Long-term frequency stability is a more serious problem

I since it controls the bias stability of Rayleigh wave sensors.

The dual Rayleigh wave sensor aging rate under "ovenized" condit-
I (2)

ions is about 10-8 per year. For a Rayleigh wave accelerometer

i with 500 MHz frequency and 0.1 fps/bit, this gives a bias stabil-

ity error of 0.016 g/year. This stability is adequate for "moder-

ately accurate" inertial grade accelerometer applications. With-

out oven control of the temperature, the oscillator stability is

I typically 10- 6/year and the resulting bias stability 0.02 g/year

which exceeds current tactical missile specifications. Tempera-

ture control is a definite limitation of current Rayleigh wave

Itechnology.

An important limitation of Rayleigh mode resonators is that

90% of its energy is on the surface, hence it is very sensitive

to surface conditions. Changes of 1 part per billion have been
(2)

observed in the resonator frequency in a period of one hour. This

can be traced to molecular surface chemistry, dust particles, or

other surface effects on the substrate. After the SAW pattern is

defined it would be highly desireable to cover or passivate the

surface so as to protect the wave from surface contaimination.

This would negate the need for costly packaging and sealing of

the sensors. This last limitation is addressed by the current

study where higher order acoustic solutions are sought which do

not possess the high degree of surface sensitivity.

5



2.0 OBJECTIVES

The objective of the phase I research was to establish the

theoretical foundations for using higher order Rayleigh and int-

erfacial wave resonators as strain sensors in cantilever-type

accelerometers. Existing crystals, because of their surface sen-

sitivity and thermal characteristics, are not able to meet the

technical specifications of inertial grade accelerometers for Air

Force tactical systemis.

The overall research objective is to obtain resonator struc-

tures with improved aging characteristics, so that these sensors

can meet the .,erformance requirmenets for "moderate accuracy"

accelerometers of Air Force tactical inertial navigation systems,

*I including missiles and aircraft.

2.1 Work statement

The research c" ,ducted under Phase I was defined by the

* following work statement:

Task 1. Perform theoretical studies of Rayleigh waves at single
layer surfaces on quartz substrates, to determine the
thickness limitations and effects of the layer. Select-
ed materials for this study will include layered acous-
tic wave resonators of MgO, Y2 0 3 , AlN, SiO x , Al203, and
Ti02 -

Task 2. Correlate the theoretical analysis with any existing
published experimental results in either technical
journals or DoD reports.

Task 3. Expand the analysis of single layers to three anisotr-
opic layers. Studies will be made in characterizing
various combination of "loading and stiffening" layers
on quartz.

Task 4. Design and develop a high stability Rayleigh wave sen--

sor using the theoretical reults of the above studies.

I Task 5. Investigate theoretically and numerically Stoneley wav-

es in joined piezoelectric half-spaces.

* 6



3.0 TECHNICAL APPROACH

Higner order Rayleigh waves differ from the normal surface

waves because their energy is distributed between the layer and

the substrate. This has the advantage that the wave characteris-

tics such as velocity and impedance are less sensitive to changes

in the surface acoustic and/or electrical conditions. Also, the

reflective grooves and electrode materials in a resonator struc-

ture are passivated by the layer and the effects of contamination

are reduced. These conditions all contribute to the making of a

more stable resonator.

Lord Rayleigh in 18843) predicted the propagation of seismic
(4)

waves along the surface of the earth. Ewing, Jardetzky and Press

extended Rayleigh's work to layered isotropic media. Since most

(5)
crystals are anisotropic, Lim and Musgrave in 1970 studied in-

terface wave propagation at boundaries between two similar aniso-
(6)

tropic media and they extended the work of Stoneley to include

anisotropic media.
(7)

Farnell and Adler in 1972 studied Rayleigh wave propagation

in layered anisotropic media. They concentrated their studies on

special cases where the thickness of the layers was small compar-

ed to a wavelength. The results showed the existence of single-

mode Rayleigh waves at the boundary of half spaces with a single

layer of dissimilar material.

Recently the advantages of layered wave behavior has been
(8)

demonstrated by Yamonouchi for SiO x on LiTa0 3 and LiNb0 3. In

addition to the advantages of surface passivation, these layered

substrates show temperature compensation due to the dissimilar

7



thermal expansion .,ad elastic constants with temperature.

In order to study propagation of waves in layered acoustic

media two approaches were taken. The first followed the analysis

(9)
of Farnell to describe and predict wave behavior for Rayleigh

wave propagation in layered media. This analysis was used to

evaluate several layer materials deposited on ST-cut quartz. The

theoretical predictions were then compared with previously publ-

ished experimental results.

The second approach was undertaken jointly with Professor

D. Barnett of Stanford University. Professor Barnett specifi-

cally analyzed search methods for interfacial wave propagation

in general anisotropic media. These search methods were derived
(10)

from the theory published by Barnett and Lot-he. A reprint of

this paper is included with this report as Appendix II. Theory

of interfacial wave propagation is described in section 3, and

numerical results for prescribed materials are presented in sect-

ion 4. The importance of this work is that a method was develop-

ed which predicts the existence of interface waves. Unlike sur-

face waves, interface waves do not exist for all material combin-

ations. Until now an exhausting search was always required to

determine the existence of such waves. Using new search techni-

ques, Stoneley wave behavior has been predicted without complet-

ely solving wave equations. For the first time Stoneley waves

have been found in quartz. By properly selecting the cuts of

quartz used, it was found that Stoneley waves with good piezo-

electric coupling and fast decay with distance from the interface

do exist.

8



3.1 Surface Acoustic Waves

In a piezoelectric material the three displacement components

uj along the Cartesian axes x., and t' electrostatic potential

are related by the equations of motion and electrostatics,
__u_____ 029

P -- c ii ,Z a x a x i - e k i i aX i ax k ( 1 )

Auk 2 -
axki ax 1I s aXi aXk

in which p is the density of the material and c jkl , e ki and

tik are respectively, the tensors for the elastic stiffness mea-

sured at constant electric field, for the piezoelectric coupling

and for dielectric permittivity measured at constant strain. The

subscripts i,j,k, and 1 range over the values 1,2, and 3 ard the

summation convention on repeated subscripts is employed. The

contracted matrix notation and the full tensor notation will be

used interchangeably in this report. Particular elastic, piezo-

electric, and dielectric constants for materials studied in this

report are given in Appendix I.

All solutions considered are straight crested in that the

planes of constant phase are perpendicular to the direction of

propagation and there is no variatirn of the amplitude in the

direction perpendicular to the sagittal plane. The coordinate

system used throughout this report is as shown in Figure 3 with

the x, direction taken as parallel to the propagation vector and

the x3 direction taken as perpendicular to the surface (also in-

terface in later sections).
/



X3

X2 X1

SOLID SUBSTRRTE

Figure 3- Diagram showing coordinate system orientation for
theoretical analysis of wave propagation.

For a single material surface, Rayleigh wave solutions will

be of the form

ui= ai cxp (ilbx.,) exp [ik(x, - v1)] (2)

=a 4 CXp (ikbx,) exp [ik(x, - vt)].

Substituting (2) into the equations of motion (1) results in a

secular matrix of the form

(r., - p62) r,2 r 13  PF14 al

r2 ( 22 - pv2) r.3  r24  a2  .=

1L13  -L p2) Pr, 34 a3

r, 4  P24  P34  r 44 ,, (3)

10



where the terms of the matrix are related to the material const-

ants by the following quadratic coefficients:

r~l = C133 b2 + 2c,1 3b + c,,

r.2 =C 323b 2 + 2c,2,,,b + c1,1.2

r3,= C333 b 2 + 2ca 333b +M c 313  (4)

i12  c1323b2 + (c12 + C1312)b + c1112
r,= C133b + (C13 + c1313)b + c,,,,

r 23  C233b 2  (C1233 +I C2313)b +F C1213)

I P,, e b2 + (e13, + e311)b + el,

r2. = e332b2 + (e,3, + e312)b + e112
r34 = C33.b2 + (e33 + e313)b + e113,

r = -(633b. + 2t3b + i).

The above homogeneous equations have a nontrivial solution only

I if the determinant of the square r matrix is zero. A computer

program was written to expand the above matrix assuming a known

velocity, v, as a polynomial (8th order for piezoelectric mater-

ials) in the decay constant b. The program evaluated the complex

roots bi  which occured as conjugate pairs. In the substrate the

solutions of interest decay with depth away from the surface,

hence only roots in the lower half of the complex plane are re-

I tained.

In order to now satisfy t.e f.ree sface boundary conditio

a wave solution composed of sums of terms given by eq. (2) where

each term satisfies the wave equation (1) is used. Each term is

considered a:, eigenfunction, , with an associated eigenvalue

or decay constant b(*). The total solution is then given by

II1



Ui = Voia,. exp (ikb'R)x3) cxp [ik(x, - vi)]

(5)SCa4 CXp (ikb €'° xz) exp [ik(x, - vt)]

where summation over all the root numbers (4 for piezoelectrics).

The complete solution is obtained by satisfying the mechani-

cal and electrical boundary conditions. Mechanically the normal

stress compoents T, T , and T must be zero at the surface.stes cmpens 13 23 23

Electrically there must be continutity of electric potential and

the normal componentf displaceme,,t current D 3 *

Substitution of eqs.(5) results in a different set of four

homogeneous equations in the four weighting functions C , and

for nontrivial solutions the determinant of the coefficients of Cn

must vanish.

+~ ~ ~~~ ~~~/ c ib
' '

,+(:1; C33 
" 
411

(ca~i + c32i3bn )aii -1+ (e 13 + e332jbn)a 4n C =0

-(j,+ ,I , ,+ (iai + I, , "(6)

L12

12



An objective of this study was to determine the behavior of

'Rayleigh waves on ST-cut quartz. Equations 1-6 were solved num-

erically using an iterative search on velocity until equation (6)

was satisfied. A plot of the displacement components and potent-

ial are shown in Figure 4a. When the surface is shorted the last

row of eq.(6) is replaced by the the eigenvectors which forces

the potential to zero at the surface. A plot of the displacements

and potential for this case is shown in Figure 4b.

3.2 Surface Acoustic Waves in Layered Media

When the surface of a crystal is covered with a layer of

dissimilar material as shown in Figure 5, the behavior of the

Rayleigh wave is modified to take into account (1) the elastic

properties of the layer and (2) the electric boundary conditions

of the layer surface and the interface region.

Solutions to the layered problem can be obtained by solving

equations 1-3 in the layer and substrate separately using the

appropriate material constants. The individual solutions in the

layer and infinite substrate are still assumed to be the same

form as equation 5 where the appropriate layer or substrate roots

apply.

The complete solution is obtained by satisfying the approp-

riate boundary conditions. In the case of layered media the

boundary condition determinant mr complex. The surface of

the layer is stress free and electrically open or shorted. How-

ever, the interface region must also be satisfied by matching

the normal stresses, the displacements, and electrical potential

and/or displacement currents.

13
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Figure 4- Rayleigh wave displacements and potential
on ST-Quartz when the surface is (A)
unshorted and (B) shorted.
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X3

LAYER X2 X3=h

INFINITE SUBSTRATE

Figure 5 - Diagram showing coordinate system orientation for
theoretical analysis of wave propagation in
layered media.

In this report three distinct types of materials were anal-

yzed. The first situation involved a piezoelectric substrate

(YX-Quartz) and a non-piezoelectric isotropic layer such as fused

(9)
quartz, hereafter designated PN53 after the notation of Farnell.

In this case the transverse displacement component is uncoupled

and there are 7 boundary conditions which must be satisfied. The

boundary condition equations for a unshorted interface are

L-T
T3 (X3-0) 83(X3 0)
L -TS
T5 (X3 -0) -T5 (X3 -O)

T L(X3 -h) I
5 (X3 =h) Cn  =0 (7)
L S

u1 (X3 -0) -u1CX3'G)
L S
u3 (X3 -0) -u3 (X3 '0)

DA3 Vi3) 1 0
j 3 * _J L _J

15



and for a shorted interface are

L -TST3 (X3-0) 3(X3-0)L -ST5 (X3-0) I T5 CX3-0)

5%(x3-h) Cn =0 (8)I Tl(X3
"h )

L S
u1(X3-0) -u1 (X3-0)
L -US
u3 "X3 -0) I- 3(X3-0)

L (X3-0) I 0

The displacement vectors of equations 7 and 8 are modified to

account for the dielectric constant of the layer and the free

I space above the layer. When the substrate crystal solution con-

tains transverse displacements these must be accounted for in the

boundary conditions. This applies whether the layer material is

isotropic (no coupled transverse displacements) or anisotropic.

This case is represented by ST-Quartz substrates and layer mater-

ials such as fused quartz, Rutile, Sapphire, and Yittrium Oxide.

In these cases the unshorted boundary conditions are

I LS
T3 (X3 -0) -T0(X3 -0)
LS

T5 (X3-0) -TS(X3 -0)

T4 (X3-0) -T(X 3-0)TL 0
u3 (X3=h)

I5 (X3-h) -uC(X =0
u1 (X3mO) 

(9)

L S
L I S
u2 "X3-0) _u2 "X3 -0)
L I SIu 3 "X3-0) -330

D L(X3 -0) 0

I 16



and for shorted electrical conditions are

LSI T3CX3-0) I-TS(X3=0)

TX3-0) -TS(X3-O)L S
T4(X 3 -0) I-T4(X 3 -0)
TL(X 3 -h) 0
L C n  =0 (10)

T3 (X 3 -h)
L0

TL(X 3-h) 0L S

ul" 3 -0 I -ul(X3 -.0)
L I S

u2 (X3mO) u2(X3-O)

u3C 0 -u3 (X3 -m0)

0 L(X3-0) 0

The boundary conditions are further complicated when the

layer material is itself piezoelectric and with coupled tran-

sverse displacements. This case was analyzed for the substrate

material ST-Quartz and layer Aluminum Nitride. The boundary

condition determinant in this case contains twelve equations.

The form for unshorted surface and interface is

T(X 3 -0) -TS(X 3 0)
TL -T
T5 (X3 -0) 5(T~X3 -0)T L -TX
T4 (X 3 -0) I- 4 (X 3 =0)

T3 (X3 -h)

T LT5  -Xh) 0T(X 3 h) 0 C =0
41 (X3=0)
L S (n1I(X3-0) -uc(x3-o )

U2  - 2 -
L S
U3 (x3 -0) -u3 (X3 -0)

D3 (X3~h
L. (X3-0) -(V X3=0

D3 ,X3 -0) -DiX 3 -0)

17



When the top surface and interface regions are shorted

electrically the new for of the boundary matrix is

(X3=0) -T(X3=O)

L S
T5 (X3-h) I -T5(X3-0)

T (X3"h) 0 Cnl =8)
4 4

34(X3-h) I0

TL(X 3-h) 0L

T4(X3-h) 0
L SCn =0
U1 (X3 -0) I ,~30

L I Z2( 2

3 I X(X3)0)

L03(X3-h) 0
# (X3-0) I 0

0~ S*(X3 -0)-

In the general case there will be a solution which satisfies

the wave equations in the layer and substrate and simultaneously

satisfies all 12 of the above boundary conditions. Electrical

coupling is estimated by comparing the shorted and unshorted wave

velocities. For a piezoelectric layer on a piezoelectric subst-

rate there will be four possible combinations of boundary condit-

ions corresponding to four possible transducer electrode .onfig-

urations shown in Figure 6.

Figure 6- Four possible transducer electrode configurations
when both layer and substrate are piezoelectric.
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3.3 Interfacial Waves

Interfacial waves, commonly called 3toneley Waves, occur at

the boundary of two infinite dissimilar materials as shown in

Figure 7. Unlike surface acoustic waves, Stoneley waves only

exist under special circumstances. The exact nature of these

special circumstances is not well understood and an objective of

this study was to develop methods of searching for Stoneley waves

in general anisotropic media.

X3

INFINITE TOP SUBSTRATE

INFINITE BOTTOM SUBSTRATE

Figure 7- Diagram showing coordinate system orientation
for analysis of wave propagation along the
interface between two anisotropic materials.

The analysis of interfacial waves is similar to analyzing

layered surface acoustic waves. The equations of motion are

solved independently in each material and then summation solut-

ions are used to satisfy the boundary conditions. For interface

waves the unshorted boundary condition matrix is

19



* t b7
T4(X 3 -0) i-T4(X3-0)

t b

T5 (X3-0) I -T(X 3 -0) (3

t b
0 (X3 -0) -T(X 3-0)

D3(X 3 0) -D3(X 3 0)- L -

Ftb
u3CX3 -0) I-u 3 (X3 -0)
t

'9 CX3 -0) I--, (X3 -0)
43 (X3 -0) -D(X 3-0) .

t b

ri tae the=form

0 bT3 (X 3 -0)

I t2b



3.4 Multi-Layered Resonators

Multi-layered resonators are photo etched on crystals cont-

aining multiple layers of dissimilar materials on a piezoelectric

substrate. The layers may be piezoelectrically active also and

shorting planes may exist at any interface as depicted in figure

8 for a two layer system.

x3

LAYER #2 
X3 -h2

LAYER #1 Xl

INFINITE SUBSTRATE

Figure 8- Coordinate system for a two-layered resonator

geometry.

Analysis reveals tha solution contains both Rayleigh and

Stoneley wave like solutions. Because of this, the behavior of

Rayleigh and Stoneley waves in the individual material sub-sets

was studied before solutions in multi-layered media were under-

taken.

The analysis follows a familiar trend. The equations of

motion are solved independently in each material and summation

solutions are used to satisfy the boundary conditions. Vor waves

in unshorted multi-layered resonators the boundary condition mat-

rix is as follows:
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I

I!

l3(X3 0) -T (X3-0) 0

T @X-0 -T TX3 X0 h 0

T5(X3 -0) T-TX(X3 h0) 0
u(Xa30) -T"(X 3-0) 0

U* 2 (X3-0) n
I ~ -ulX 3m0)

0 TX(X3-0) hi)

0 3n T(X 3-hl) I-Tm(x- hi)

0 I T(Xah1) I-TD(X 3 - hl)

3 0 I u~T(X3-hl) hia~=~ (5
0 u~(X3-hI) I-uTX' i

0 I T5 (X3- h2)

3 e abv noato reer to te t aye~) ,itreae

,(O I -*'(X 3usO) IT 0 hl

iayer 4) and bsa(s)3 0

n *CX-hl) M hi)

2 2

I -(3 hl) I m -hl

I-D3(X3- hi)I0 0 D3C(X3-h2

0 m X-)_*n(30I D

I The above notation refers to the top layer(in) , intermediate

layer(n) and substrate(s). When the two interfaces and top layer

I are shorted the boundary condition matrix takes the form:

22



T4(X 3 -0) -T'(X 3 -0) 0

TCX3-0) -T'(X 3-) 0

u5(X 3 -0) -(X 3 -0) 0

uT (X3 -0) -u (X3 -0) 0

4X(X3 -h0) 4 3 )Sn I

UI(X 3 -0) TI(X3-h)USn m)

0 T3 (X3-hl) -T3 (X3- hi)
u3X0 -u3 (X3-h I)-u(3hl =
0 T(X 3 -hl) I-T(X 3  hl)

0 T(X 3 -h) I-T(X 3  h)

0 T n CX3 Shi) I-T'(X3' hi)

0 u(X 3'h1) -u2CX3m hi) (16)
I -u (M (

0 n (x3 =hl) I-u3 (X3  hi)
033 Tu3 C 3 h2

0 0 TM -h2)

0 I 0 ITi(X3 = h2)

SIX-0 0 I 0

0 0 n (x3-0) I 0

0 0 n(X 3 -hi1 0

0 0 I (X3-< hI)
I m

L 0 040 (X3- h2)

Clearly intuitive methods of solution determination would be

difficult in this case due to 20 equations in 20 unknowns. How-

ever recognizing certain groupings as natural Rayleigh and/or

Stoneley wave solution sub-sets may be used as a search method

in these multi-layered structures.
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4.0 TECHNICAL RESULTS

In this section the technical results of research conducted

under Phase I (Section 2.1) is presented. In Section 4.1 the

results of layered media surface wave velocity studies are pre-

sented for six different layer materials. In Section 4.2 the

results of studies on interfacial waves are presented. The dis-

covery of interface waves (Stoneley) in quartz for the first time

is an important result of the phase I study and may lead to a new

class of acoustic resonators. Using these results, a SAW sensor

design is discussed in section 4.3 and in Section 4.4 theoretical

results are compared to published experimental results for layer-

ed SAW resonators.

4.1 Layered Substrate Analyses

In this section six different materials are considered as

candidates for passivation of SAW resonators. The materials

considered are magnesium oxide (MgO), yittrium oxide (Y 2 03),

silicon dioxide (SiO2), aluminum nitride (AlN), rutile or titan-

ium dioxide (TiO 2 ), and sapphire (Al 203 ). The theoretical appr-

oach for analyzing layered SAW velocity was discussed in Section

3.2. Results are presented as dispersion diagrams, surface wave

coup!ing- (AV/Vo). and displacement/potential vectors vs distance

from the top of the layered surface. For completeness tables of

numerical solutions are included with displacement diagrams.

* 24
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4.1.1 Atilysis of MgO/ST-Quartz

Layers of MgO deposited on ST cut Quartz substrates were

analyzed. Elastic and dielectric constant data for single crys-

tal MgO (Appendix I) were used with the crystal c-axis perpendic-

ular to the surface and the X-axis parallel to the Quartz X-axis.

Surface wave velocity vs normalized layer thickness is shown

I in Figure 9a. Because MgO is a faster (higher velocity) material

the velocity increases with layer thickness until reaching the

slow-shear wave velocity (dotted line) of ST-Quartz. Surface wave

coupling is proportional to LV/Vo and this parameter is plotted

in Figure 9b for two transducer configurations. Coupling drops

quickly for layers greater than 1% of a wavelength.

Selected numerical solutions for MgO layers are shown in

Figures 10,11,12, and 13. Figures 10-12 show the effect of short-

ing the electric field when the layer is 10% of the wavelength.

The displacements/potential show penetration increasing with

I layer thickness. In Figure 13 displacements and potential are

shown for a layer only 0.1% of the wavelength. The increased

penetration with increasing layer thickness is due to the near-

ness of the bulk shear wave in the Quartz substrate.

Numerically MgO/ST-Quartz is governed by equations 9 and 10

IN of section 3.2 which contain 10 sub-solutions. These are present-

ed in the Tables of Figures 10-13. Displacement/potential vectors

associated with each sub-solution root (decay constant) are shown

together with the 10 complex weighting factors for the complete

summation solution per equation 5 of Section 3.1.
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3400

SUBSTRRTE:ST-CUT QUARTZ SHORTED
LAYER:Z_CUT_XPROPMgO SHORTED

3340
U

----------------------------------------------------------

E 3280

IU
0i J 3220

a:

3160

3100 ,ni .

3NORMALIZED LAYER THICKNESS (H/Lambda)

.0010

SUBSTRATE: ST-CUT QUARTZ
LRYER:Z CUTX._PROP MgO

.0008

> .0006

a:
-J
Il .0004

.0002

.001 ;010 .100 1.000 18

NORMALIZED LAYER THICKNESS (H/Lambda)

Figure 9- Velocity dispersion (a) and wave
coupling (b) as a function of layer
thickness for MgO/ST-Quartz.
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4.1.2 Analysis of Y 203 /ST-Quartz

Layers of yittrium oxide on ST-Quartz substrates were analy-

zed. Elastic and dielectric constant data for single crystal Y 203

(Appendix I) were used with the crystal c-axis perpendicular to

the surface and the X-axis parallel to the Quartz X-axis.

Surface wave velocity vs normalized layer thickness is shown

in Figure 14a. Because Y2 03 has a velocity only slightly high-

er than that of the quartz substrate, the velocity of the layered

wave becomes constant for large normalized thickness. This impli-

es the wave is entirely in the film and not affected by the subs-

trate. This is confirmed by the coupling shown in Figure 14b

where the coupling becomes zero as the thickness approaches a

wavelength.

Selected numerical solutions for Y 20 3 layers 10% of a wave-

length are shown in Figures 15-17 under different conditions of

shorted and unshorted electric fields at the top layer and inter-

face. Numerically Y 20 3 /ST-Quartz is governed by equations 9 and

10 of section 3.2 which contain 10 sub-solutions. These are pre-

sented in the Tables of Figures 15-17. Displacement/potential

vectors associated with each sub-solution root (decay constant)

are shown together with the 10 complex weighting factors for the

complete summation solution per equation 5 of section 3.1.
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Figure 14- Velocity dispersion (a) and wave
coupling (b) as a function of 14yerI thickness for Y203/ST-Quartz.
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4.1.3 Analysis of SiOx/ST-Quartz

I Layers of fused quartz on ST-cut Quartz substrates were an-

alyzed. Elastic and dielectric constant data for isotropic fused

quartz (Appendix I) were used. Surface wave velocity vs normal-

ized layer thickness is shown in Figure 18a. Because fused quartz

is a faster material the velocity increases with layer thickness

I until reaching the slow shear velocity of the substrate. Surface

wave coupling is plotted in Figure 18b for two transducer config-

urations. The coupling becomes zero for thicknesses greater than

* half a wavelength.

Selected numerical solutions for fused quartz layers are

I shown in Figures 19-21. The displacements/potential show penet-

ration increasing with layer thickness. The increased penetrat-

ion with increasing layer thickness is due to the nearness of the

bulk shear wave in the Quartz substrate.

Numerically SiOx/ST-Quartz is governed by equations 9 and 10

3 of section 3.2 which contain 10 sub-solutions. Displacement and

potential vectors associated with each sub-solution are shown to-

gether with the 10 complex weighting factors for the complete

summation solution per equation 5 of Section 3.1.
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Figure 18- Velocity dispersion (a) and wave
coupling (b) as a function of layerIthickness for SiOx /ST-Quartz.
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4.1.4 Analysis of AlN/ST-Quartz

Layers of aluminum nitride (AIN) deposited on ST-cut Quartz

substrates were analyzed. Surface wave velocity vs normalized la-

yer thickness is shown in Figure 22a and 23a for combinations of

shorted layer and/or interface. Because AlN is a faster material,

the velocity increases with layer thickness until reaching the

slow-shear velocity (dotted line) of the ST-Quartz substrate. Be-

cause AlN is piezoelectric, four possible transducer configurat-

ions are possible. Coupling efficiency to surface waves with only

interdigital electrodes at either the interface or top layer sur-

face is shown in Figure 22b. When the interdigital electrodes are

at the interface, the coupling is reduced because the wave displ-

acements are located at the top surface. If the electrodes are at

the surface and the layer is thick, coupling efficiency improves

because of the piezoelectric AlN layer.

For the floating ground plane 'either at the surface or int-

erface) the coupling is shown in Figure 23b. Normally, the coup-

ling is low for thin layers. However when the layer thickness is

increased, the coupling peaks at 2% of a wavelength.

Numerical solutions for AlN layers are shown in Figures 24-

27 for different shorting conditions and thickness equal to 10%

of a wavelength. Numerically AlN/ST-Quartz is governed by equat-

ions 11 and 12 of section 3.2 which contain 12 sub-solutions.

I These are presented in the Tables of Figures 24-27. Displacement

* and potential vectors associated with each sub-solution root are

shown together with the 12 complex weighting factors for the com-

plete summation solution per equation 5 of section 3.1.
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Figure 22- Velocity dispersion (a) and wave coupling (b)
as a function of layer thickness for AIN on
ST-Quartz with electrodes at either the top

* or interface surface.
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Figure 23- Velocity dispersion (a) and wave coupling (b)

as a function of layer thickness for AlN on

ST-Quartz with interdigital electrodes and an
opposing ground plane.
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4.1.5 Analysis of TiO 2/ST-Quartz

Layers of rutile (Ti0 2 ) on ST-cut Quartz substrates were an-

alyzed. Elastic and dielectric constant data for rutile were us-

ed (Appendix I). Surface wave velocity vs normalized layer thick-

ness is shown in Figure 28a. Because rutile is a faster material

the velocity increases with layer thickness until reaching the

slow shear velocity of the substrate. Surface wave coupling is

3 plotted in Figure 28b for two transducer configurations. The cou-

pling becomes zero for layers greater than 10% of a wavelength.

Selected numerical solutions for rutile layers are shown in

Figures 29-31. The displacements/potential show penetration in-

creasing with layer thickness. The increased penetration with in-

creasing layer thickness is due to the nearness of the bulk shear

wave in the substrate.

Numerically TiO 2/ST-Quartz is governed by equations 9 and 10

3 of section 3.2 which contain 10 sub-solutions. Displacement and

potential vectors associated with each sub-solution are shown to-

3 gether with the 10 complex weighting factors for the complete

summation solution per equation 5 of Section 3.1.

I
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Figure 28- Velocity dispersion (a) and wave coupling (b)
as a function of layer thickness for Rutile
(TiO 2 ) on ST-Quartz.
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I

4.1.6 Analysis of Al2 0 3/ST-Quartz

Layers of sapphire (A1203 ) on ST-cut Quartz substrates were

analyzed. Elastic and dielectric constant data for c-axis orient-

ed sapphire were used (Appendix I). Surface wave velocity vs nor-

malized layer thickness is shown in Figure 32a. Because sapphire

is a fast material the velocity increases with layer thickness

until reaching the slow shear velocity of the substrate. Surface

wave coupling is plotted in Figure 32b for two transducer config-

urations. The coupling becomes zero for layers greater than 10%

*I of a wavelength.

Selected numerical solutions for sapphire layers are shown

U in Figures 33-35. The displacements and potential show penetrat-

ion increasing with layer thickness. The increased penetration

with increasing layer thickness is due to the proximity of the

I bulk shear wave in the substrate.

Numerically Al2 0 3/ST-Quartz is governed by equations 9 and

10 of section 3.2 which contain 10 sub-solutions. Displacement

and potential vectors associated with each sub-solution are shown

together with the 10 complex weighting factors for the complete

3I summation solution per equation 5 of section 3.1.

I
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Figure 32- Velocity dispersion (a) and wave coupling (b)

as a function of layer thickness for Sapphire

(A1 2 0 3 ) on ST-Quartz.
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4.2 Interfacial Wave Analyses

In this section highlights of a study of Stoneley waves in

anisotropic crystals are presented. For illustration, data on

copper and quartz crystals is presented. Copper was selected to

establish a basis with previous publications. Quartz is of part-

icular interest because it is synonymous with frequency control

* and stability.

The approach taken in this interfacial wave study is shown

in Figure 36 where a view along the X3 direction (normal to the

2X plane) is shown. This plane is called the interface plane.

INTERFRCE X2

I!
, >k

x

Figure 36- Coordinate system relative to the interface plane
plane for Stoneley wave analysis. Crystal material
parameters are rotated with respect to the kx dir-
ection along which the interface wave propagates.

In order to obtain interface waves in a single material

two different orientations of the same crystal must be used. As

* shown in Figure 36 each orientation (top and bottom material) is

obtained by rotating the crystal material parameters with respect

to the wave propagation vector. Typically the top material is

rotated by a negative angle and the bottom material by a positive

angle. The objective of our study was to determine their propert-

ies and how best to search for interface waves.

58



I
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4.2.1 Analysis of Copper

The interface wave velocity as a function of material rotat-

ion is shown in Figure 37. Unrotated material constants for

copper (Appendix I) were used. The top and bottom material

constants were obtained by rotating negative and positive amounts

respectively.
3000

U MATERIAL: UNROTATED COPPER

(n
\ 2700

SLOW SHEARU

I 2400

I Ld
LJ
> 2100

wCUT-OFF

1800

z

150 5 10 15 20 25 30 35 4 1 45

ROTATION ANGLE (DEGREES)

Figure 37- Stoneley wave velocity vs material rotation angle
in single crystal copper (001 plane).

Two points are of interest: (1) the larger angles result in large

bulk like shears at the interface and (2) angles less than cut-

off do not possess Stoneley wave solutions.

A Stoneley wave search technique was developed based upon

the prediction of cut-off using techniques of Barnett and Lothe

(Appendix II). This search method does not require complete sol-

ution of the wave boundary equations and greatly simplified the

Stoneley wave searches.
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Stonely wave solutions for two different angles are shown in

I Figure 38. AT ± 100 the displacements are not strongly bound to

the interface however, at ± 200 the wave is well bound and decays

within 3-5 wavelengths of the interface.

Stoneley wave solutions were found to be strongly influenced

by the material anisotropy as defined by

I 2 C44 /(C1 1 -C12

Normal copper possesses an anisotropy of 3.2 however, artificial-

ly changing C44to obtain an anisotropy of 1.52 and the effects

this has on Stoneley wave solutions is shown in Figure 39. Lower

anisotropy lowers the cut-off angle and causes the wave to be

I more closely bound to the interface.

4.2.2 Analysis of Quartz

Using the above search techniques (Appendix II) a study was

performed on single crystal Quartz. Although these waves were not

found to exist on all cuts of quartz they have for the first time

been found in quartz. The data indicates piezoelectrically act-

ive and well bound waves are possible. This result suggests a

potentially useful resonator structure with electrodes encapsula-

ted at the material interface.

A complete listing of all numerical search data within this

report is not possible due to length restrictions hence only one

Stoneley wave solution for quartz will be presented. Shown in

Figures 40 and 41 are the velocity solutions for X-cut, Z propa-

gating Stoneley waves with a rotation angle of± 200. The effects

of shorting the electric field at the interface are shown in the

detailed plots of Figure 42.
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Figure 38- Stoneley wave solution on Copper fir a
rotation angle of (a) t 100 and (b) ± 200.
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I Figure 42- Expanded plot of the displacements and potential
of Stoneley waves on XZ-Quartz when the interface
is (a) unshorted and (b) shorted.
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4.3 Stoneley Interface-Wave Accelerometer

A Stoneley wave is a type of elastic wave that is propagated

along the interface of. two elastic solids. Because its energy re-

mains at or near the interface, it can be genera.ted, reflected

and detected at the interface. Since Stoneley wave, derived from

surface acoustic wave (SAW) technology, is also a planar techno-

logy, and hence can be fabricated by photolithographic techni-

ques. That is why Stoneley wave devices can be fabricated at

costs comparable to those for integrated circuits.

The interface Stoneley wave resonator consists of a pair of

reflective gratings on a surface, defining a resonant cavity for

interface acoustic waves. These waves can be generated and

detected by an interdigital transducer, which is piezoelectrical-

ly coupled to the interface strain variations of the acoustic

waves. This resonant cavity, shown in Fig.43, is coupled to a

feedback amplifier to maintain the energy in the cavity.

Figure 43- Stoneley Interface Wave Configuration
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The bit quantization for an interface-wave accelerometer is

in the same range as those of high precision accelerometers. For

an interface wave accelerometer with 320 MHz frequency and proof

mass loading to produce 200 ppm strain at 20g input acceleration,

i the bit quantization will be:

(20 g) (32 fps/sec/g)
---- --- --- ---- --- --- --- ---- --- --- --- = 0.01 fps/bit

6 --6
(320 x 10 bit/sec) (200 x 10 p/p)

The short-term stability of the interface wave resonator (as

I suming for the worst case is similar to surface acoustic wave) is

in the order of 0.1 parts per billion.

For the above example, this gives a comparable short-term stabi-

I lity of:
-4

I10 ppm

- --- ------------ 10 micro-g
200 ppm / 20 g

and gives a dynamic range of

20 6

------------ 2x10

10 x 10

The accelerometer overall design has a direct bearing on the
complexity of the inertial guidance system. The digital nature of

the interface wave accelerometer output results in an extremely

simple system architecture. Shown in Fig.44 is a baseline guidan-

ce system block diagram which shows how the interface wave accel-

erometer signals are processed to generate not only acceleration
but also velocity and displacement signals (words) for the gui-

dance system.

I



OSCILLATOR No. I

QUARTZ COUNTLI

ISYSlEK GUIDANCE &

Inertal$GudanceSyste

A VELOM|Y
COUNT£ER,,....

OSCILLATOR No. 2

USPLACLhLUT

COUNTLA

Figure 44- Proposed Baseline Interface Wave Accelerometer in
Inertial Guidance System

The mixer output is a frequency proportional to acceleration

and the acceleration counter generates a binary count with each

clock reset from the microprocessor. The output of the accelerat-

ion counter is summed (integrated) in another counter which then

generates a binary word representing velocity. Displacement is

computed by summing the velocity counter output and transmitting

the displacement word to the microprocessor. The microprocessor

provides the appropriate scaling and generates the needed guidan-

ce and control signals.

I The digital system proposed is capable of providing acceler-

ation signals with more than 12 bits accuracy due to the large

dynamic range of such proposed accelerometer. The system is

unique in that 12 bit accuracy is provided without using analog-

to-digital converters. This, in turn, will enable th desi.n of a

system with minimum power requirements. Starting with this

baseline system, the detailed design will be the subject for the

proposed study.
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4.4 Comparison With Experimental Results

The theoretical results of Section 4.1 were compared with

experimentally published results. The experimental method con-

sisted of monitoring the frequency (proportional to velocity),

resonant resistance, and quality factor (Q) of SAW resonators

while a crystalline film was deposited (sputtered) under vacuum.

The following films were evaluated by this method: MgO, SiO
x

Y2 3' and AlN. The experimental results are shown in Figures

45 and 46.

Because the experimental results are based upon time of dep-

osition and not absolute film thickness it was difficalt to com-

pare directly theory and experiment. Nevertheless it can be ass-

umed that thickness is proportional to time for discussion purp-

oses. Comparing the theoretical results (MgO) of Figure 9 with

Figure 45, several points are noted:(1) the velocity or frequency

increases with film thickness and (2) after an initial drop in Q

the loss is relatively constant with only a small increase with

thickness. The increase in frequency with thickness is predicted

because we believe the film grown was considerably less than 10%

of a wavelength.

Experimental results for SiO films are compared to theore-
x

tical predictions using Figure 18. The important points are: (1)

experimental frequency drops with film thickness in contrast to

theory which predicts an increase with film thickness and (2) ex-

perimental results indicate a sharp increase in loss at an inter-

mediate thickness. The later is compatible with what is predict-
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ed for film thickness in the range than 5-10% of a wavelength.

The discrepency between the frequency behavior is explained as

follows: For film thickness less than 5% of a wavelength the fre-

quency changes by a very small amount, however this is masked by

a relatively large temperature increase during sputtering. Half

way into the film deposition there is a decrease in the rate of

frequency drop and at the same time the loss increases dramatic-

ally. We believe this is where the film thickness is approaching

5-10% of a wavelength resulting in increased wave penetration and

a sharp drop in coupling.

Experimentally films of Y 203 were the most well behaved with

a uniform drop in frequency during deposition, a relatively small

increase in resistance, and a drop in Q. The decrease in freque-

ncy and the low loss was predicted because the surface wave does

not couple into a bulk wave for Y2 o3 layers at any thickness.

Experimentaly films of AIN showed an increase in frequency

and a uniform increase in loss during deposition. Near the end

of the deposition the resistance increase was accele:ated. Theor-

etically the increase in frequency was predicted. The large inc-

rease in resonator resistance and loss near the end of the depos-

iton indicates the film was near 5-10% of a wavelength hence the

piezoelectric coupling drops and coupling to a bulk wave occurs.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

* This study has established the theoretical foundations for

using higher order Rayleigh and interfacial (Stoneley) waves for

acoustic devices such as SAW resonators and sensors. Techniques

for analyzing layered SAW devices as well as multi-layered inter-

I facial waves were developed and applied to many anisotropic mat-

*! erials as part of this study.

Layered SAW device performance using materials such as MgO,

Siox, AlN, Y203, A1203, and TiO 2 was theoretically analyzed and

the results compared with experimental results. Shifts in freque-

I ncy, loss to bulk mode coupling, and changes in piezoelectric

coupling can now be predicted for any layer material. From this

study it is concluded that passivation , for the first order

Rayleigh mode cannot be achieved using layers of material. This

is due to the fact that the particle displacements of the surface

I wave are at the surface of any deposited layer and hence a decre-

ase in piezoelectric coupling because of the separation between

the elastic displacements of the wave and the potential generat-

ing electrodes at the interface.

For future studies of layered SAW devices it is recommended

I that temperature effects and power flow calculations be added to

th 4 "4it analysi t hZn'qUes. These properties can be used

to predict temperature compensated materials and determine orien-

tations where power flow is co-linear with the wave vector.

73



I
I

An analysis of interfacial waves in multi-layered media was

I completed during this phase I study. A method of analyzing inter-

facial waves was developed which included search methods which

greatly reduced the time needed to determine the existence of

Stoneley waves. Using these methods, Stoneley waves were for the

first time predicted in single crystal quartz. Stoneley waves

I which are well bound and piezoelectrically active were found to

exist for several orientations c' quartz. This is an important

discovery since it may result in a new class of acoustic resonat-

ors and sensors with stability superior to existing SAW devices.

Unlike layered SAW devices, Stoneley wave structures are well

I passivated and require no hermetic enclosure; thus they will have

better stability and lower cost.

Based upon the results of this phase ! study, recommendat-

* ions for future work are:

1. To add temperature sensitivity and power flow analysis
to the existing theoeretical techniques.

2. To design, fabricate, and test interface wave resonators
and to compare their characteristics with theoretical
predictions.

3. To design, fabricate, and test interface wave sensors as
I inertial navigation (acceleration) sensors.

I
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7.0 APPENDICES

- 7.1 Appendix I

* The following arrays of material constants were used to per-

form the studies contained in this report. The constants are arr-

anged by title, elastic constants, piezoelectric constants, die-

U lectric constants and density.

THE MATERIAL IS ST-CUT QUARTZ

+8.67@E4-10 +2.749E+103 -8.587E+09 -1.038E.+09 +O.00OE+00 +0.00OiE+00

-8.587E+09 -4.8303E+09 +1.306E+11 +1.83722+09 +O.0UO4E+00 +OOOF+J

-1.038E+09 -1.339E+10 +1.872E'et t4,117E+10i +0.OOE+00 +2.OOOEl+00

+O.00E+00 +0.OOgE+00 +OJ.OOO~E+003 +O.0OOE+0i +3.032E+10 -7.593E+09

+O.00GE+00 +0.OOOE+00 i-.0UE+00 +O.OGOE+00 -7.593E+09 +6.743E+10

+1.710E-01 -3.832E-02 -1.327E-01 -8.205E-02 +0.0O30E+00 +g.OOOE+00
+O.UOOE'00 +0.OUOE+00 *G.OUOE+00 -tU.GOJ0EI00 -6.653E-02 -9.903E-02

+Oa.000E+00 +0.OO0E+001 +g.OOUE+00 +O.OOOE+00 -7.197E-02 -1.071E-01

+3.920E-11 +0.OOOE+00 +O3.OGGUEtO
+0.GOOE+00 +4.017E-11 -8.972E-13
+O.gOOE+00 -8.972E-13 +4.003E-11I DENSITY =2650

iflE MATERIAL IS FUSED QUARTZL

+7.850E''0 +1.6.3E+104 +1.610E+10 +0.OOOE+00~ +j*OO+0 +O.g0(JE+0

+1.610E--O +7.850lE+10 +1.610E+1fj +(J.OOOE+00 +0.0O0E+00 +O.OOOE+00

+1.610E+i0 +1.610iE+10 +7.850E+10 ±O.OOUE'00 03.000E+00i +U.0U(5E+00I+0.OGOE+00 i-.GggE+00 +(3.OJUE+O(U +3.120L+10 +0.OOUE+00 +O.O0OE+00
+O.000E+00 +0.OOOE+00~ +U.UO5OE+00 +O.OO E+05 +3.120E+10 +0.GOi0E+00

+0.O00E+050 +0.OOOE+00 +0aOU0E+00 +O.~UE+00 +0i.000Edi0 +3.1203E+10

+0.OUOE+00 +0.G0UE+00i +0.0OJUE+00 +O.OOOE-00 +0.0O40E+00 +O.OJ0OE+0

+O.G00E+00 +0.OOOE+00 +lO.U'OL±00 +O.O3U0E+00 +O.Ol0E+00 +O.00lUE+00
+0.000E+00 +0.000E+00 +0.000E+I0 +0.000E+o0 +0.0030E+00 +0.0005E+00

+3.320E-11 +Oi.005E+00 +0.OOOE+00
+O.GGGE*00 +3.320E-11. +0.0O5UE+00
+U.kJOE+00 +J.O0OE+00~ +3.320E-11

* DENSITY = 2200
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I THE MATERIAL IS Y!TTRIUM OXIDE

+2.270Ei11 +1.380E+11 +1.38Oill1 +0.00OOE+00 +O.OOGE+00 +0.000E+00
+1.380E+11 +2.270Ei+l1 +1.380E+ll 0000E00 +O.OOOE+00 +O.00tOk+00
+1.380E+1. +1.380E+ll +2.270E+11 +0.000E+00 +0J.000E+00 +O.000E+00
+0.006E+00 +0.000E+00 +0.000S+00 +6.860E+10 +0.000E+00 +0.000E+00
+O.OO0E+00 +0.000E+00 +0.000E+00 +0.000E+00 +6.860E+10 +O.GGOE+00
+0.000E+00 +0.000EiO00t-.OOOE+00 +0.OOOE+09 +O.OOGE+00 +6.860E+10

+0.00OE+00 +O*QO3OE+00 +0.000E+00 +0.000E+00 +0.000E+00 +0.000E+00
+0.000E+00 +0.OOOE+00 +O.00E+00 +0.OOOE+00 +0.000E+00 +0.000E+00
+0.090E+00 +0.OOOE+00 +0000E+00 +O.OOOE+00 +0.000E+00 +O.OOOE+00

I+1.151E-10 +0.000E+00 +O.OOOE+00
+0.000E+09 +1.151E-10 +0.000F,+00
+0.000E+00 +0.000E+00 +1.151E-10

DENSITY = 5010

THE MATERIAL IS UNROTATED COPPER

+1.710E+l1 +1.239E+11 +1.239E+11 +0.OOOE+00 +O,000E+00 +0.000E+00
+1.239E+11 +1.710E+11 +1.239E+11 +0.000iE+00 +.OaOE+oo +0.000E+00
+1.239E+11 +1.239E+l1 +1.71 E+ll +0.000E+00 +0.000E+00 +0.000 +00
+0.000E+00 +O.000E+00 +0.000Et00 +7.560E+10 +0.000E+00 '-0.000Ei.00
+0.OOOE+00 +0.000E+00 +O.OOOE+00 +0.000E+00 +7.560E+10 4-0.000E+00
+0.000E+00 +0.O00E+00 +0.000E+00 +0.000E+00 +0.000E+00 +7.560E+10

*+0.000E+00 +0.000Etoo +0.OOOE+00 +0-000Ej+00 +0A500E+00 +.OE0* ~~~~+0.000E+00 +0.000E+00 +0.000E+00 +0.0E0 .0i0 +00E0
+OOO0+0.000E+ 00 +0.0Ug+og +0 000Ei- +0 00I+0 +0.0GJUE+00 +O.000E+00

+0.000E00 +0.000E+00 +0.000E+00IOOO0 +0.000E +00 +0.000E+ 00
+O.000E+00 +0.000Ei-00 +0.000~E+00I DENSITY =8950

TFE MATERIAL IS RUTILE (04O1)

+2.660E+l1 +1.730E+ll +1 .360i1:t Il + ±. 000E+00~ -0.(300E+00 +0.000OE+00
+1.730E-11 +2.66CJE+ll +1.360ll1 +O.OUOiE+00 +U.GIJOE+00 +O.0Oi0E+00
+1.360E+ll +1.360E+ll +4.700E+11 +0.000SE+00 +0.OO0E+00 +O.000E+00
+0.0003+00 +O.OOOC+00 +0.000E+005 +1.240E+l1 +CO.000E+00 +0.OOOE+00
+0.OOOE+00 +0.OOOE+00 +0.000L+00 +O.0O5UE+00 +1.240E+l1 +0.0009+00
+O.OOOE+00 +0.000E+00 +O.000E+030 +0.~00E+00 +OS.OO0E+00 +1.890E+ll

+O.OOOE+00 +O.OOOEtOO +0.000E 00 +0.OOi0E+00J +O.OOGE+00 +0.OOOE+00
+0.O00E+00 +0.00OJE+00i +0.000JE+040 +0.OOOE+00 +O.OOOE+00 +0.000E+00
+O.GOOE+00 +0.090E+00 +0.000E+6i0 +(3.OO4E+00 +O.OOOE+00 +0.000E+00

+7.610E-10 +0.OGOE+00 +0-000E+00
10 n .000 +0 * 7. 1 /* O 1-36., 0I+0.000E+00 +O.GOOE+00 +1.504E-09

DENSITY =4280
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THE MATERIAL IS ZCUTX_PROP_MjO

+2.964E+11 +9.5(JOE+lg +9.5091-+10 +0.000F+00 +O.OOcJE+gg +O.OOOE+00
*9.crggE+1g +2.964E+I. +9.5U0iE+lg +Ui.U~UFL.+0 iU i00+0 +000E0
+9.500cE+10 +9.500E+10 +2.964E+ll +0.000UE+00 +0.OOOE+00 +O.OUOE*00
+O.OOOE+00 +0.0OA0E+00 +0.OOOE+00 +1.560E+ll +O.OOOE+gg +O.OOOE+00
l-0.00IE+001 40.OUOE+00 +0.OOOE+00 +O.OOOE+00 +1.560E+ll +O.OOOE+00
+O.OOGE+00 +O.OO0E*00 +0.00(JE+00 +O.OE+00 +0.OO0E+00 +1.560E+.1

+U.OOOE+00 +g.OOOE+00 +O.00E+00 +O.OOUE+0 +O.000E+00 +O.OOOE+00
*0.000E+00 +0.OOUEt00 +O0OE+00J +0.OOOE+00 +O.GOOE+00 +0.OOOE+00
+0.OJE+00 +0.O00E+00 +G.OOOE+00 +0.OUiE+00J +0.O00E+00 +0.00O5E+0

+8.544E-11 +O.O00E+00 +O.0OJ0E+0
+O.OO0OE+00 +8.544E-11. +0.OOUE+00
+0.000E+00 +00E+003 +8.544E-11

DENSITY = 3583

THE MATERIAL IS SAPPHIRE (001)

+4.970E*11 +1.640E+1. -I1.110E+11 -2.350E1-10 +O.OOUE+00 *O.GOE-00

+1.640E+ll +4.970E+ll +1.11.NE+11 +2.350E+10 +0.OOOE+00 +O.GOOEtOO

+1.L1OE+11 +1.110E+ll +4.980E+ll +0.000E+00 YO.OOOE+00 +O.OOOE+00

-2.350E+10 42.3SOE+lg +0.OOOE+00 +1.470E+11 +0.OOOE+00 +0.OOOE+G0

+O.OOOE+00 +0.gooE+oo +0.OOUE*00 +0.OOOE+00 +1.470Etll -2.350E-10

+O.OOOE+00 +0.OOOE+00 +g.5ooe+0J +O.OOOE+00 -2.350E+10 +1.665E+].

+0.009F+00i +0.OOOE+00 +0.00OJE+00 +U.OOUE+00 +O.OOOE+00 +0.OUOE+00

+0.OBUEi-oo -,-.300E+00 +g.0OUE+iJ0 +0000E+00 +O.00OSE+00 +O.GOOE+00

+0.00E+00 +O.OOOE+00 +O.OUOE+00 +0.OOOE+00 +g.OOOE+00 +0.OOOE+00

+8.280E-11 +O.GOOE+00 +0.O(OE+00
+0.OOUE+00 +8.28OE-11 +O.OOOE+00
+9.0OUE+00 +O.OOOE+00 +1.020E-10

DENSITY = 3980

THE MATERIAL IS ZX AL NITRII)E

+3.450E+]. +1.2501'+1l +1.2UJOE+ll +.E+U +0.OOJOE+00 +0.OOOE+00
+1.250E+ll +3.450E+ll +1.2(0E+11 +0S-01+0 +0.00b(30 iO-.OOOE+00
+1.200E+ll +1.200E1ll +3.95(JE+ll +0.00OE+03 +O.0O0E+00 +0.OOOE+00

+O.OOOE-00 +O.OOOE+00 +O.OI6UE+00 +1.1805E+ll +0.0Oi0E+00 +U.0O3OE+00
+0.00013+00 +O.OOOE+00 +O.OUOd00E0 +0.OOOE+00 +1.180E*11 +0.OOOE+00

+O.0(IOE+00 +-.O00E+00 i-0.OOUEI-00 +0.0OOE+00 +O.00OE+00 +1.100C+11

+0.000E+00 i-.OOOE+00 +0.000E+003 +O.OUUE+00 -4.8050E-01 +0.GOOE+00

+g0oeo+.OOOE+00 + O.000E +00 .L$ -4.800E-fl +0.GOJOE+00 +O.OOOE+00

-5.800E-01 -5.800E-01 +1.550E+00 +0.UOE+00 +O.OOOE+00 +0.GOOE+00

+8.OOOE-11 +O0.5OE+00 0-0"U+00
+0.OOE+00 +8.OOOE-11 +0.00iE+00

*U0O~O +9.50OZS 1

DENSITY 3260
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7.2 Appendix II

The basis of a search technique for Stoneley waves is cont-

ained in the paper reprinted in this appendix. The importance

of formulating the wave impedance is discussed in considerable

detail by the authors. Using these techniques a search method

for Stoneley waves in piezoelectric materials was developed.
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On the existence of surface-wave solutions for anisotropic
elastic half-spaces with free surface

JI Lathe
Institute of Physics. University of Oslo. Oslo, Norway

D. M. Barnett

Department of Materials Science and Engineering, Stanford University. Stanford. California 94305

A proof is developed that for a given direction of propagation on the free surface of a half-infinite
anisotropic crystal, a surface-wave solution with a certain phase velocity YR < vL, where vi it the limiting
velocity, will always exist, except in the special case when the bulk wave defining the limiting velocity
satisfies the condition of a free surface. The proof is in terms of the surface impedance, which relates the
amplitude at the surface of a surface wave with the external forces needed at the surface. The properties of
the impedance as a function of phase velocity determines whether a surface wave not requiring external

forces at the surface exists for a certain phase velocity. The proof is valid also in the case of degeneracies
in the cigenvalue problem entering the analysis.

I. INTRODUCTION harmonic waves traveling along the surface in the mt

Recently the present authors' provided a proof for the direction

existence of surface-wave solutions for elastic half- u(x) - A(n x) expfik(mtx - v)], (2.1)
spaces with a free boundary. However, the proof was in
terms of the Lagrangian for moving dislocations, a where t is the phase velocity for propagation along the
quantity-not well known among surface-wave re- surface, x is the position vector with a point on the sur-
searchers. Here an alternative proof in terms of the so- face as origin, and nox is thus the depth below the sur-I called surface-wave impedance is given. Usually a sur- face. With respect to a fixed external Cartesian lab-
face wave with given phase velocity and given amplitude oratory set of unit vectors, x has components-xt, X2,
at the surface requires external foifces at the surface. and x3.
The surface impedance relates amplitude at the surface The amplitude A as a function of depth depends-on thel! withexternal forces needed at the surface. However,Thamitd asaunioofepheedsnth
wihneternalmpefoces s nea n euire.mev, boundary conditions at the surface and the boundary con-

surface waves which do not require external forces at ditions at infinite depth. For given k, m, n, and v, sev-
thsurface aeis. In nths pe e willrnalyce th eral independent waves of the type (2. 1) will be possible.
the Surface may exist. In this paper we will analyze the These are derived in Sees. III and IV.
impedance as a function of velocity to see whether for
certain phase velocities the impedance satisfies the re- Referring also the elastic coefficients to the external
quirements for surface waves in the case of free sur- laboratory system, the elastic force per unit areaI faces. parallel with the surface is

In Sees. II and III an integral form of the general 0 u (2.2)
theory for surface waves maintained by external forces aJ,C(.

l is developed and, in particular, a convenient integral or, by Eq. (2. 1)
expression for the impedance is derived. As in our
previous paper' the analysis presupposes no degeneracy j = ik(nCj )Ah+ (n0C n) A (2.3)
in the eigenvalue problem appearing. In Sec. IV the a
complications that arise with degeneracy are considered where
and it is concluded that the integral expression for the
impedance remains valid. In Sec. V the properties of y = nox (2.4)
the impedance are listed. Finally, in Sec. VI we turn to sacnein oainfrtedphblwtesrae
the special problem of surface-wave propagation on free
surfaces. This is the real problem to which we are
addressing ourselves in this paper. It will be shown how

this problem can be discussed in terms of the properties
of-the impedance developed in Sees. III-V. The first /
sections of the paper are necessary prerequisites for X

the discussion in Sec. VI.

The exposition in what follows will be kept quite brief S
by appropriate reference to earlier work. fl

SURFACE

II. INTRODUCTORY THEORY FIG. 1. Coordinate systems for the description of surface

The surface has normal no, see Fig. 1. We consider waves in a half-Infinite crystal, no is the iti.ner unit normal.
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If an observer travels with a wave with the phase i.e., ith v-0 in Eq. (2.6), (mm) is positive definite
velocity v of the wave, he sees a stationary wave field, by elastic stability,
and the condition for dynamic equilibrium can be stated II(uu)Ii >0, ".o =O. (2.16)
similarly to the condition for equilibrium in the static Thus
case as Thus
csslmn 11 0, v <vL, all (2.17)

C Xljl =0 , (2.5) and likewiseaxJ ax,

where C'jl, are the dynamic elastic coefficients hl0nnlI>0, all p when v<vL
-2 0 ( so that (nn) "' and also N(0) exist for all tp when v <vL.C1Jh -CiJ11-P poMiM016J. (2.6) v<v

The preceding is general. Now we will discuss sep-
Introducing the vectors arately the case of no degeneracy and degeneracy and
L = ik-J, (2.7) show that the same integral expression for the surface-

(. wave impedance applies in either case.
the elibriu condition (2. 5) can be expressed in the wv meac ple nete ae

form III. NO DEGENERACYU N0 -ik "  , (2.8) Assume that A(nx) =A(y) in Eq. (2.1) is of the form

where 4 is the six-dimensional vector A(y) =Aa exp(ikp,y). (3.1)
() ( Then Eq. '(2.8) leads to the eigenvalue problem
(A) (2.9) No to= p o (32

and NO is the 6 X6 matrix 0o which shows that the po. must be the roots of

0104-1 0 ,10 ) 0 n0 ) . N- P1= ,0. (3.3)

(nz0n0l0 ) 0 0)1nom 0)- ( 0 0 ) (, 0n0 101n 0)i This is a sixth-order equation with real coefficients,
so there will be six roots occurring in pairs of complex

The 3 x 3 matrices (ab) occurringa in the block rep- (2.10) conjugates. Real roots cannot occur for v < vL. At v =vL,
resentation of NO are defined by one pair of roots coalesces into one real root.

S(2.11 When all p. are different (no degeneracy), it can be
b ( asserted by general theorems (NeringS and Pease6) thatThe symmetry of C'j, is such thatCis the six 4. form a complete set, (3.4)

tab) = (ba)T, or said in a more detailed fashion, the six , are linear-

where T means transposition. ly independent and any vector 4 in the six-dimensional
The above is essentially the formalism of Stroh2 and vector space can be represented by a linear combination

Ingebrigtsen and Tonning. of the six 4,. This explains the meaning of the word"9comiplete" in theorem (3.4).
In terms of the above notation, the relation between

L and A can be written Thus in the case of all P, different, the general solu-
tion of Eq. (2.8) can indeed be constructed by a super-

L=- (n0m 0)A+ ik'(n?0) (I A . (2.12) position of partial solutions of the type (3.1).

Now formally construct the operator N by the pre- Now consider the eigenvalue problem
scription (2.10) in terms of a unit vector system (m, n) N (W).= pa(P) a. (3.5)
rotated by 4 relative to the system (m, n0). However,
note that mo in the definition (2.6) of C',J' is keptfixed From Eq. (2.13) it follows that the eigenvectors for
as parallel with the surface and the direction of wave Eq. (3.5) are the same as the 4. of Eq. (3 2). The

propagation. The resulting N is a function of 0, N(), eigenvectors areinvariant to rotation.
and as shown by Barnett and Lothe 4  The eigenvalues must vary with 'P as

N=- (I+N2 ). (2.13) 34) =- (l+P1) (3.6)

The operator N(0) exists for all 4) up to the limiting according to Eq. (2.13). From Eq. (3.6) it follows that
velocity vL. The limiting velocity is the lowest velocity 2r = r d = i3.)
for which there exists an orientation for the unit vector v J P

m, m& such that 0
+ or - according to whether we consider roots with aII(n1W )lil =0, (2.14) positive or negative imaginary part.

allowing a bulk wave of amplitude AI, satisfying IntroducingI (mn~mn)A = 0 (2.15) -
2 w~ ( Q(38

and traveling in the ML direction. In the static case, f r
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where where I is block notation for a three-dimensional unit

If 2F matrix.

1 f (W) "1 (m)d, (3.9) Written out in coinponents Eq. (3.21) yieldsf2 QB+S 2+I=0, (3.22)
=- J (,). d. (3.10) SQ + QST = 0, (3.23)

B 1, 2 (n)(nn)' (nn) )]do, (3.11) BS + STB = 0, (3.24)

Ti f BQ+ (ST)'+I=O. (3.25)
* it now follows that From Eq. (3. 23) it follows that Q'S is antisymmetric.

.(3. Thus since Q"' is symmetric the impedance Z, Eq.
- . *2 (3.18), is Hermitian,

The first three of these equations are
S Z =(Z) *,  (3.26)

flA. s+ QLa = ± a. (3.13) where * indicates complex conjugation.

For v<v,, (nn)" is positive definite and consequently
* Q is negative definite. Thus Q"' exists and IV. DEGENERACY

.L i (3. 14) The considerations in Sec. III were largely based on
=Q(iI-S)A0 . (.4) the fact that the J, form a complete set when all p. are

Let a = 1, 2, 3 be the solutions with positive imaginary different. However, degeneracy may occur. For de-
* part in p,. These are the solutions which show expo- finiteness, suppose that

nential decay with increasing y and which are to be used
in the construction of surface waves. For these solutions p(

L.=Q'(iI-S)A., a=1,2,3. (3.15) p4 "pS=p 6

Now suppose that the three A, are linearly dependent. The degeneracy may either occur for reasons of sym-
-ut then by Eq. (3. 15), the same linear dependence metry or accidentally "Or a definite velocity.
quently between the corresponding , an contradction If the degenerate N still possesses six independent

with theorem (3.4). eigenvectors, the considerations of Sec. III apply in 1ol1.

S Thus the three A8 , a =1, 2,3, form avcomplele set in However, with degeneracy one is not assured that six
Thu threensional space for coplete se n independent eigenvectors exist as in the nondegenerateth ree-dim ensional space for all v < vz. The sam e con-ca e fo wh h t e r m (3 4 ap l s. W nt e d -c lusion was reached by Stroh1 by more intricate case, for which theorem (3.4) applies. When the de-

cluson as rachd b Strhl y mre itriategenerate N does not possess six independent eigenvec-
reasoning.

tors, we say that we have the case of nonsimple de-
Since A,, a = 1,2, 3, form a complete set, an ar- generacy. Static deformation [i.e., v=0 in Eq. (2.6)]

bitrary amplitude A on the surface can be obtained by in elastically isotropic bodies is such a case.8

superposition of exponentially decaying solutions pro- In the case of nonsimple degeneracy, one forms a
vided a force amplitude complete set by the introduction of generalized eigen-

J=-ikL=k(Q'+ iQ-'S)A (3.16) vectors associated with the degenerate eigenvectors.

is maintained at the surface. We can write Suppose the degenerate N corresponding to the example
('4. 1) only allows four independent eigenvectors l, ,

J=ZA, (3. 17) 41, and 45 Generalized cigenvectors t3 and 4, as-
where sociated with the degenerate eigenvectors 42 and 45 can

Z =-k(Q + iQ'IS) (3.18) then be formed according to the scheme

I will be called the surface impedance. A similar concept (- P.I) 43 = (4.2
was introduced by Ingebrigtsen and Tonning, 3 but in an (N- pI) = 5. (4.3)
eigenvector representation. In Sec. IV, the above in-58
tegral expression for Z will be shown to be valid also General theorems exist5 '6 stating that

in cases of degeneracy. the eigenvectors together with their associated (4.4)

The matrices S, Q, and B introduced in the foregoing, generalized eigenvectors form a complete set.
are not independent, but obey certain completeness Let (v) be the condition at depth y below the surface
relations. From Eq. (3.12), applying N twice gives when the force-displacement condition at the surface is

a =- ,(3.19) 43, and similarly let 2(y) correspond to t2 at the sur-

face. Combinatirn of Eqs. (4.2) and (2.8) show, since
and since the a form a complete set N and N-p 2I commute, thatR24= 4, (3.20) i-' Y 2Y.(.S

where is an arbitrary six-dimensional vector. Thus 3ty) remains the generalized eigenvector associated

V2i + (10) =0, (3.21) ywith t"(y). The explicity dependence of 43(y) is obtainedI~ ~ R (1) 0(321 by integration of
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I )+ 4(y)1, (4.6) From Eq. (3.6)
itv +1 = o, (4.20)

which, since 1 fl(.

4(y) =  exp(ikp2y)g, (4.7)

yields [The special case p2(O) = i must be considered separate-

3(y) = exp(ikpzy) 3 + iky exp(ikpzy) 2. (4.8) ly, but the conclusion is the same. I

It is apparent that since 42(Y) is decaying with in- Equation (4.17) thus reduces to

creasing y because Imp2 >0, 4(y) will also vanish as F3(0) = i4(0) (4.22)
y- co. Thus 43(y) is also an allowed component in a
surface-wave construction. and we have reached the important conclusion that Eq.

(3. 12) applies both to eigenvectors and associated gen-
Next consider 43 as a function of the angle p in N(0), eralized eigenvectors. Thus, Eq. (3. 14) also applies to

3(). 4 is not invariant to rotations 0 and the question eigenvectors as well as generalized eigenvectors. Re-
arises whether Eq. (3.12), which is the basis for the calling theorem (4.4) as the equivalent of theorem (3.4),
integral impedance expression, holds for 43. it also follows, by reasoning identical to that of Sec. 1II,

4(o) obeys the equation that A, A2, and A3 form a complete set in the three-
dimensional space and that Z, Eq. (3. 18), still deter-

[N(0) -p 2(0)I]U3(q)= 42, (4.9) mines what force J at the surface is needed to maintain

where 't is independent of 0. Differentiating this equa- a given amplitude A. The integral expression (3.18) for

lion with respect to (A and using Eqs. (2. 13) and (3.6) the surface impedance is generally valid for V < VL.

(which holds for P2), we obtain It is now also immediately clear that Eqs. (3.19)-
(N2 a (3. 26) remain valid with nonsimple degeneracy.I q-p'2I)43=(N-p 2I) o- 43, (4.10)

V. SOME PROPERTIES OF THE IMPEDANCE AND
rom which follows, by combination with Eq. (4. 11 W SOME PROPERTIES OF THE LIMITING WAVE

theory in the foregoing applies. The appearance of the

Comparing Eqs. (4. 11) and (4. 9) one sees that limiting wave at v = tL will also be discussed-in more
detail.

33 = 2P243 +'Y42 . (4.12) The impedance Z, Eq. (3.18), is Hermitian. Thus it
may be represented in the dyadic form

where v is constant. Actually 4, is not unique; it is
unique on to within an arbitrary component of 42- We Z Xe . er, erejb=j, (5.1)
may choose V=0. Integration of Eq. (4. 12) then yields I

43(0) = 43(0) exp[K(o)], (4. 13) relations and XA are real eigenvalues.

where The Lagrange functiun per unit length per unit depth

2 =2pr a .surface disturbance in uniform motion is

(414 L ='k(J-A --JA-), (5.2)

i. e., or by Eqs. (3. 18) and (3. 26),

K(0)=2 f# p2(0)do. (4.15) - L ---A-ZA. (5.3)

! Consider now N(0)43 (0). By Eqs. (4. 9) and (4. 13) At v =0, - L ib strain energy only and thus positive de-
o =4finite. Since A in (5. 3) is arbitrary, it follows that

N( =)(0) exp[- K(JI)IN() 30)+ X >0, i = 1,2, 3 when v = 0. (5.4)

Keeping the amplitude A fixed but changing the ve-
=Pz(4) 3(0) + exp[- K()h]42 . (4.16) locity, the relation

Thus making angular averages T v ( a) A (5.5)

* 44(0) =4i3(0) + exp[- 0014)]2. (4. 17) is valid, where T is kinetic energy per unit length per
From Eqs. (4. 15) and (3.6) unit depth. Thus, by Eq. (5. 3)

K0 f2  I= n 1 + (4.18) 1 oA*(Z)A=-2T. (5.6)
2(0)

so Since T is positive definite, it follows thatI exp[- "'")I i +PM¢)
+ 0K= 1 (4.19) Z is negative definite (5.7)

T+ 11 (0



and imaginary, it now follows from Eq. (5. 11)

X, i1,2,3 decrease with increasing v. (5.8) JAt=0. (5.18)

A similar conclusion based on the relation
VI. EXISTENCE THEOREMS

E=v 2 - L Most of the facts listed in Sec. ire well known and
therefore detailed proofs have been omitted. The only

where E is the total energy, was reached by lngebrigtsen property which appears not to be commonly realized is
I and Tonnlng. 3  that of (5. fO), which also will be of sonic importance

From Eqs. (3.18) and (3.23) it follows that in the considerations tofollow.
A A- QA(9 However, what apparently has not been realized be-

fore is that the preceding list of facts provide sufficient
Since Q-t is real and negative definite when I-VL, it basis for the construction of existence theorems.
follows that

If a velocity vR< vL for which
AZA50 for real A, (5.10) IIZ(VR)II =0 (6.1)

the possible equality in (5. 10) referring to 1, ="'L, which can be found, then a surface wave satisfying the-con-
will be discussed later. dition of free surface, i.e., a Rayleigh wave (RW), with

The power flux per unit area in the y direction, W, is phase velocity PR, exists. Condition (6. 1) is the con-

W = (/4i)(J*A- JA*). (5.11) dition that J=0 in Eq. (3. 17) be compatible with some
nonzero A. The amplitude of the surface wave satisfies

Of course, in a surface disturbance in uniform motion ZQ;R)AR=O. (6.2)

parallel with the surface
W=0. (5.12) Condition (6.1) is equivalent with the condition that

The impedance (3.18) satisfies this requirement one of the eigenvalues A1 in Eq. (5.1) be zero at V=VR.
Comparing (5. 10) and Eq. (6.2), it is immediately

=(o/4i){A*[(Z)* - ZA}=0. (5.13) clear that the RW, if it exists, is elliptically polarized.

As v - vL, Q diverges in the sense that one of its Now make the following supposition: The limiting wave
eigenvalues approaches infinity. Q- is convergent, and does not satisfy the condition of free boundary
one of the eigenvalues approaches zero. S diverges, J, t 0 (6.3)
but Q'8 converges. This is ensured by the eigenvalue
in Q-I approaching zero. Thus as is well established and no RW exists for t <V.. We shall see that a-con-
and can be ascertained in the present formalism by the tradiction arises.
methods of Barnett and Lothe, I Z(v) approaches a finite From Eq. (6.3)
limit as v - vL, and we define Z(vL) through this limit

Z(VlJL> 0, (6.4)
"vL a( or, by Eq. (5.15), (5.16), and Eq. (3.26)

The limiting wave arises by coalescence of two partial
waves j, and 4* as V-VL. Since Z(i') applies to one or ALZ'(vL)A, >0, (6.5)
the two coalescing waves (that for which Imp, > 0), we which by Eq. (5. 1) takes the form
must expect Z(VL) to apply to the limiting wave itself

J, Z(VL)AL. (5.15) )" , LIe, ALI' >0, (6.6)

Indeed, the validity of this relation can be proven, where ?LI,L is the value of A, at v=vL, etc.

AL is the eigenvector of a real matrix, Eq. (2. 15). According, to Eq. (5. 18)
Thus AL, the amplitude of the limiting wave, can be
chosen as purely real. The limiting wave is linearly X ,L JeLAL 1'= (6.7)
polarized. We will always choose , L I

AL real. (5.16) Let ;1,L be the largest eigenvalue. Multiply Eq. (6.7)
by \,,L and subtract it from inequality (6.6)

With AL real and the fact that the limiting wave is a
bulk wave, it follows that (6.8)

JL purely imaginary. (5.17)

From the construction (see for example Ref. 1) of With no RW for "< t'L, all XI,L0 according to Eqs.

the limiting wave from the slowness surface, it follows (5.4), (5.8), and (6. 1). All terms A\I,L-A-p.L are negative

Ithat the group velocity is parallel with the surface so or zero according to the definition ot XA,-. Inequality

that W,=0 also for the limiting wave. Alternatively, we (6.8) is therefore incompatible with our assumption and

may say that the limiting wave has inherited this proper- we have arrived at tie following theorem:

ty from t, Imp, >0. Since At is real and J, purely When the limiting wave does not satisfy the con-
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dition of a tree surface, ,it can be asserted that V2 =(C j/)/ 2 , (7.4)a Rayleigh-wave solution exists for some vR <VL.

(6.9) V3= (C11/p)
112,

Suppose two RW solutions exist, for vx <VL and where p is the density. Only the wave with velocity V,

VR2<vk, respectively. Then two eigenvalues, say A1 and satisfies the condition of free surface. We are interested
,A2, must be negative-at Il, in the case when this wave defines the limiting velocity,

* < 6.0 thus

X2,L< 0. (7.5)IL V1< V3 '
We can always find a real vector A which is perpendicu-
lar to both the real and imaginary part of e3,L. For this Since the only restriction on C 44 is that C44 must be

real vector A positive, this is a possible case.

AZA=,, IejLA1 +),LLIe2, LA 12<0, (6.11) From the isotropy condition (7.2) and the lattice
in iolati of inequality (5.10). stability requiremc.t (7.3) it follows that

vio ion (7.6)
Thus we also have the theorem: 13.

Thus we are discussing the case
There is at most one RW solution for v <VL. (6.12) v1 < v2 < v3. (7.7l)

VII. DISCUSSION Explicit calculations show that VA is a function of V2 and
Some complications arise when more than one limiting V3 only and because of inequality (7.6) vR is smaller

wave exist at ilk. The various cases that may arise have than V2, so that
previously been discussed quite exhaustively by the
present authors. The general conclusion is a theorem tJ =vR(V 2 , VU) < V2. (7.8)

actually somewhat less restrictive than theorem (6.9): Now given V2 and V3 and thus also vR, we may vary V,

When one of the limiting waves at vt does not independently by changing C44 without violating lattice

satisfy the condition of a free surface, it can stability, to realize either one of the cases
be asserted that a Rayleigh-wave solution exists 1 <,v = C 112 < V3, (7.9)

for some VR<VL. (7.1) or

When the limiting6 vave does satsify the condition of = VI < VR < 12 < V3. (7.10)

a free surface, a Rayleigh wave may or may not occur In case (7. 10) there is no RW for v <vL. In this case
for some VA <VL. In this situation both cases occur. The the surface wave with velocity vA belongs to a branch of
-previous considerationsI by the present authors for leaky surface waves.i
transverse isotropy contained some algebraic errors

we-will use this opportunity to present a corrected The theoretical conclusions of this paper-are in com-
discussion. plete accord with and in fact rationalize the numerical

work reported by Farnell. 9
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